Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.045
Filtrar
1.
Sci Rep ; 14(1): 8096, 2024 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582789

RESUMO

Circular RNAs (circRNAs), are a covalently closed, single-stranded RNA without 5'- and 3'-termini, commonly stem from the exons of precursor mRNAs (pre-mRNAs). They have recently garnered interest, with studies uncovering their pivotal roles in regulating various aspects of cell functions and disease progressions. A notable feature of circRNA lies in the mechanism of its biogenesis involving a specialized form of splicing: back-splicing. A splicing process that relies on interactions between introns flanking the circularizing exon to bring the up and downstream splice sites in proximity through the formation of a prerequisite hairpin structure, allowing the spliceosomes to join the two splice sites together to produce a circular RNA molecule. Based on this mechanism, we explored the feasibility of facilitating the formation of such a prerequisite hairpin structure by utilizing a newly designed oligonucleotide, CircuLarIzation Promoting OligoNucleotide (CLIP-ON), to promote the production of circRNA in cells. CLIP-ON was designed to hybridize with and physically bridge two distal sequences in the flanking introns of the circularizing exons. The feasibility of CLIP-ON was confirmed in HeLa cells using a model pre-mRNA, demonstrating the applicability of CLIP-ON as a trans-acting modulator to upregulate the production of circRNAs in a cellular environment.


Assuntos
RNA Circular , RNA , Humanos , RNA Circular/genética , Células HeLa , RNA/genética , RNA/metabolismo , Splicing de RNA/genética , Precursores de RNA/metabolismo
2.
Biochem Biophys Res Commun ; 709: 149838, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38564939

RESUMO

Dnttip2 is one of the components of the small subunit (SSU) processome. In yeast, depletion of dnttip2 leads to an inefficient processing of pre-rRNA and a decrease in synthesis of the mature 18S rRNA. However, the biological roles of Dnttip2 in higher organisms are poorly defined. In this study, we demonstrate that dnttip2 is a maternal gene in zebrafish. Depletion of Dnttip2 leads to embryonic lethal with severe digestive organs hypoplasia. The loss of function of Dnttip2 also leads to partial defects in cleavage at the A0-site and E-site during 18S rRNA processing. In conclusion, Dnttip2 is essential for 18S rRNA processing and digestive organ development in zebrafish.


Assuntos
Proteínas de Saccharomyces cerevisiae , Peixe-Zebra , Animais , RNA Ribossômico 18S/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Processamento Pós-Transcricional do RNA , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Precursores de RNA/metabolismo
3.
Anal Chem ; 96(15): 5913-5921, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38563119

RESUMO

CRISPR/Cas technology has made great progress in the field of live-cell imaging beyond genome editing. However, effective and easy-to-use CRISPR systems for labeling multiple RNAs of interest are still needed. Here, we engineered a CRISPR/dCas12a system that enables the specific recognition of the target RNA under the guidance of a PAM-presenting oligonucleotide (PAMmer) to mimic the PAM recognition mechanism for DNA substrates. We demonstrated the feasibility and specificity of this system for specifically visualizing endogenous mRNA. By leveraging dCas12a-mediated precursor CRISPR RNA (pre-crRNA) processing and the orthogonality of dCas12a from different bacteria, we further demonstrated the proposed system as a simple and versatile molecular toolkit for multiplexed imaging of different types of RNA transcripts in live cells with high specificity. This programmable dCas12a system not only broadens the RNA imaging toolbox but also facilitates diverse applications for RNA manipulation.


Assuntos
Sistemas CRISPR-Cas , RNA , RNA/genética , Sistemas CRISPR-Cas/genética , RNA Guia de Sistemas CRISPR-Cas , Edição de Genes/métodos , Bactérias/genética , Precursores de RNA
4.
Elife ; 122024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38577979

RESUMO

Splicing is the stepwise molecular process by which introns are removed from pre-mRNA and exons are joined together to form mature mRNA sequences. The ordering and spatial distribution of these steps remain controversial, with opposing models suggesting splicing occurs either during or after transcription. We used single-molecule RNA FISH, expansion microscopy, and live-cell imaging to reveal the spatiotemporal distribution of nascent transcripts in mammalian cells. At super-resolution levels, we found that pre-mRNA formed clouds around the transcription site. These clouds indicate the existence of a transcription-site-proximal zone through which RNA move more slowly than in the nucleoplasm. Full-length pre-mRNA undergo continuous splicing as they move through this zone following transcription, suggesting a model in which splicing can occur post-transcriptionally but still within the proximity of the transcription site, thus seeming co-transcriptional by most assays. These results may unify conflicting reports of co-transcriptional versus post-transcriptional splicing.


Assuntos
Precursores de RNA , Transcrição Gênica , Animais , Precursores de RNA/genética , Precursores de RNA/metabolismo , Splicing de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA , Íntrons/genética , Mamíferos/genética
5.
Nat Commun ; 15(1): 2809, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561334

RESUMO

Protein arginine methyltransferase 9 (PRMT9) is a recently identified member of the PRMT family, yet its biological function remains largely unknown. Here, by characterizing an intellectual disability associated PRMT9 mutation (G189R) and establishing a Prmt9 conditional knockout (cKO) mouse model, we uncover an important function of PRMT9 in neuronal development. The G189R mutation abolishes PRMT9 methyltransferase activity and reduces its protein stability. Knockout of Prmt9 in hippocampal neurons causes alternative splicing of ~1900 genes, which likely accounts for the aberrant synapse development and impaired learning and memory in the Prmt9 cKO mice. Mechanistically, we discover a methylation-sensitive protein-RNA interaction between the arginine 508 (R508) of the splicing factor 3B subunit 2 (SF3B2), the site that is exclusively methylated by PRMT9, and the pre-mRNA anchoring site, a cis-regulatory element that is critical for RNA splicing. Additionally, using human and mouse cell lines, as well as an SF3B2 arginine methylation-deficient mouse model, we provide strong evidence that SF3B2 is the primary methylation substrate of PRMT9, thus highlighting the conserved function of the PRMT9/SF3B2 axis in regulating pre-mRNA splicing.


Assuntos
Processamento Alternativo , RNA , Animais , Humanos , Camundongos , Arginina/metabolismo , Camundongos Knockout , Mutação , Proteína-Arginina N-Metiltransferases/metabolismo , RNA/metabolismo , Precursores de RNA/metabolismo , Splicing de RNA/genética
6.
MAbs ; 16(1): 2342243, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38650451

RESUMO

The controlled expression of two or more proteins at a defined and stable ratio remains a substantial challenge, particularly in the bi- and multispecific antibody field. Achieving an optimal ratio of protein subunits can facilitate the assembly of multimeric proteins with high efficiency and minimize the production of by-products. In this study, we propose a solution based on alternative splicing, enabling the expression of a tunable and predefined ratio of two distinct polypeptide chains from the same pre-mRNA under the control of a single promoter. The pre-mRNA used in this study contains two open reading frames situated on separate exons. The first exon is flanked by two copies of the chicken troponin intron 4 (cTNT-I4) and is susceptible to excision from the pre-mRNA by means of alternative splicing. This specific design enables the modulation of the splice ratio by adjusting the strength of the splice acceptor. To illustrate this approach, we developed constructs expressing varying ratios of GFP and dsRED and extended their application to multimeric proteins such as monoclonal antibodies, achieving industrially relevant expression levels (>1 g/L) in a 14-day fed-batch process. The stability of the splice ratio was confirmed by droplet digital PCR in a stable pool cultivated over a 28-day period, while product quality was assessed via intact mass analysis, demonstrating absence of product-related impurities resulting from undesired splice events. Furthermore, we showcased the versatility of the construct by expressing two subunits of a bispecific antibody of the BEAT® type, which contains three distinct subunits in total.


Assuntos
Processamento Alternativo , Animais , Subunidades Proteicas/genética , Humanos , Galinhas , Anticorpos Biespecíficos/genética , Anticorpos Biespecíficos/biossíntese , Células CHO , Éxons/genética , Cricetulus , Proteínas de Fluorescência Verde/genética , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/biossíntese , Precursores de RNA/genética
7.
Int J Mol Sci ; 25(6)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38542364

RESUMO

Retinitis pigmentosa 11 is an untreatable, dominantly inherited retinal disease caused by heterozygous mutations in pre-mRNA processing factor 31 PRPF31. The expression level of PRPF31 is linked to incomplete penetrance in affected families; mutation carriers with higher PRPF31 expression can remain asymptomatic. The current study explores an antisense oligonucleotide exon skipping strategy to treat RP11 caused by truncating mutations within PRPF31 exon 12 since it does not appear to encode any domains essential for PRPF31 protein function. Cells derived from a patient carrying a PRPF31 1205C>A nonsense mutation were investigated; PRPF31 transcripts encoded by the 1205C>A allele were undetectable due to nonsense-mediated mRNA decay, resulting in a 46% reduction in PRPF31 mRNA, relative to healthy donor cells. Antisense oligonucleotide-induced skipping of exon 12 rescued the open reading frame with consequent 1.7-fold PRPF31 mRNA upregulation in the RP11 patient fibroblasts. The level of PRPF31 upregulation met the predicted therapeutic threshold of expression inferred in a non-penetrant carrier family member harbouring the same mutation. This study demonstrated increased PRPF31 expression and retention of the nuclear translocation capability for the induced PRPF31 isoform. Future studies should evaluate the function of the induced PRPF31 protein on pre-mRNA splicing in retinal cells to validate the therapeutic approach for amenable RP11-causing mutations.


Assuntos
Oligonucleotídeos Antissenso , Precursores de RNA , Retinite Pigmentosa , Humanos , Precursores de RNA/genética , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/uso terapêutico , Fases de Leitura Aberta , Mutação , Códon sem Sentido , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Linhagem
8.
Genome Res ; 34(2): 231-242, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38471738

RESUMO

A-to-I RNA editing is a widespread epitranscriptomic phenomenon leading to the conversion of adenosines to inosines, which are primarily interpreted as guanosines by cellular machines. Consequently, A-to-I editing can alter splicing or lead to recoding of transcripts. As misregulation of editing can cause a variety of human diseases, A-to-I editing requires tight regulation of the extent of deamination, particularly in protein-coding regions. The bulk of A-to-I editing occurs cotranscriptionally. Thus, we studied A-to-I editing regulation in the context of transcription and pre-mRNA processing. We show that stimulation of transcription impacts editing levels. Activation of the transcription factor MYC leads to an up-regulation of A-to-I editing, particularly in transcripts that are suppressed upon MYC activation. Moreover, low pre-mRNA synthesis rates and low pre-mRNA expression levels support high levels of editing. We also show that editing levels greatly differ between nascent pre-mRNA and mRNA in a cellular system, as well as in mouse tissues. Editing levels can increase or decrease from pre-mRNA to mRNA and can vary across editing targets and across tissues, showing that pre-mRNA processing is an important layer of editing regulation. Several lines of evidence suggest that the differences emerge during pre-mRNA splicing. Moreover, actinomycin D treatment of primary neuronal cells and editing level analysis suggests that regulation of editing levels also depends on transcription.


Assuntos
RNA Polimerase II , Precursores de RNA , Humanos , Animais , Camundongos , RNA Polimerase II/genética , Precursores de RNA/genética , Precursores de RNA/metabolismo , Transcrição Gênica , Splicing de RNA , RNA Mensageiro/metabolismo , Adenosina Desaminase/genética
9.
Front Immunol ; 15: 1354500, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38495873

RESUMO

Little is known about the role of alternative splicing (AS) in regulating gene expression in Mycobacteria-infected individuals in distinct stages of infection. Pre-mRNA AS consists of the removal of introns and the assembly of exons contained in eukaryotic genes. AS events can influence transcript stability or structure with important physiological consequences. Using RNA-Seq data from peripheral blood (PB) and ileocecal valve (ICV) samples collected from Holstein cattle with focal and diffuse paratuberculosis (PTB)-associated histopathological lesions in gut tissues and without lesions (controls), we detected differential AS profiles between the infected and control groups. Four of the identified AS events were experimentally validated by reverse transcription-digital droplet PCR (RT-ddPCR). AS events in several genes correlated with changes in gene expression. In the ICV of animals with diffuse lesions, for instance, alternatively spliced genes correlated with changes in the expression of genes involved in endocytosis, antigen processing and presentation, complement activation, and several inflammatory and autoimmune diseases in humans. Taken together, our results identified common mechanisms of AS involvement in the pathogenesis of PTB and human diseases and shed light on novel diagnostic and therapeutic interventions to control these diseases.


Assuntos
Mycobacterium avium subsp. paratuberculosis , Paratuberculose , Animais , Bovinos , Humanos , Precursores de RNA/genética , Processamento Alternativo , Paratuberculose/genética , Imunidade
10.
Mol Cell ; 84(8): 1496-1511.e7, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38537639

RESUMO

Understanding the mechanisms of pre-mRNA splicing is limited by the technical challenges to examining spliceosomes in vivo. Here, we report the isolation of RNP complexes derived from precatalytic A or B-like spliceosomes solubilized from the chromatin pellet of mammalian cell nuclei. We found that these complexes contain U2 snRNP proteins and a portion of the U2 snRNA bound with protected RNA fragments that precisely map to intronic branch sites across the transcriptome. These U2 complexes also contained the splicing regulators RBM5 and RBM10. We found RBM5 and RBM10 bound to nearly all branch site complexes and not simply those at regulated exons. The deletion of a conserved RBM5/RBM10 peptide sequence, including a zinc finger motif, disrupted U2 interaction and rendered the proteins inactive for the repression of many alternative exons. We propose a model where RBM5 and RBM10 regulate splicing as components of the U2 snRNP complex following branch site base pairing.


Assuntos
Ribonucleoproteína Nuclear Pequena U2 , Spliceossomos , Animais , Spliceossomos/genética , Spliceossomos/metabolismo , Ribonucleoproteína Nuclear Pequena U2/genética , Ribonucleoproteína Nuclear Pequena U2/metabolismo , Íntrons/genética , Cromatina/genética , Cromatina/metabolismo , Splicing de RNA , Precursores de RNA/metabolismo , Mamíferos/metabolismo
11.
Plant Sci ; 342: 112056, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38438082

RESUMO

Most of mRNAs in Eukaryote were matured after the removal of introns in their pre-mRNA transcripts. Serine/arginine-rich (SR) proteins are a group of splicing regulators regulating the splicing processes globally. Expressions of SR proteins themselves were extensively regulated, at both transcription and splicing levels, under different environmental conditions, specially heat stress conditions. The pine genome is characterized by super-long and easily methylated introns in a large number of genes that derived from the extensive accumulation of transposons (TEs). Here, we identified and analyzed the phylogenetic characteristics of 24 SR proteins and their encoding genes from the pine genome. Then we explored transcription and pre-mRNA splicing expression patterns of SR genes in P. massoniana seedlings under normal and heat stress temperature conditions. Our results showed that the transcription patterns of SR genes in pine exhibited significant changes compared to other plant species, and these changes were not strictly correlated with the intron length and DNA methylation intensity of the SR genes. Interestingly, none of the long introns of SR genes underwent alternative splicing (AS) in our experiment. Furthermore, the intensity of AS regulation may be related to the potential DNA methylation intensity of SR genes. Taken together, this study explores for the first time the characteristics of significant variations in the transcription and splicing patterns of SR proteins in a plant species with an over-accumulation of super-long introns.


Assuntos
Arabidopsis , Precursores de RNA , Íntrons/genética , Precursores de RNA/genética , Filogenia , Arabidopsis/genética , Splicing de RNA , Processamento Alternativo/genética
12.
Elife ; 122024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38488852

RESUMO

Dysregulated pre-mRNA splicing and metabolism are two hallmarks of MYC-driven cancers. Pharmacological inhibition of both processes has been extensively investigated as potential therapeutic avenues in preclinical and clinical studies. However, how pre-mRNA splicing and metabolism are orchestrated in response to oncogenic stress and therapies is poorly understood. Here, we demonstrate that jumonji domain containing 6, arginine demethylase, and lysine hydroxylase, JMJD6, acts as a hub connecting splicing and metabolism in MYC-driven human neuroblastoma. JMJD6 cooperates with MYC in cellular transformation of murine neural crest cells by physically interacting with RNA binding proteins involved in pre-mRNA splicing and protein homeostasis. Notably, JMJD6 controls the alternative splicing of two isoforms of glutaminase (GLS), namely kidney-type glutaminase (KGA) and glutaminase C (GAC), which are rate-limiting enzymes of glutaminolysis in the central carbon metabolism in neuroblastoma. Further, we show that JMJD6 is correlated with the anti-cancer activity of indisulam, a 'molecular glue' that degrades splicing factor RBM39, which complexes with JMJD6. The indisulam-mediated cancer cell killing is at least partly dependent on the glutamine-related metabolic pathway mediated by JMJD6. Our findings reveal a cancer-promoting metabolic program is associated with alternative pre-mRNA splicing through JMJD6, providing a rationale to target JMJD6 as a therapeutic avenue for treating MYC-driven cancers.


Assuntos
Neuroblastoma , Precursores de RNA , Sulfonamidas , Humanos , Animais , Camundongos , Precursores de RNA/genética , Precursores de RNA/metabolismo , Glutaminase/genética , 60645 , Histona Desmetilases com o Domínio Jumonji/metabolismo
13.
mSystems ; 9(4): e0020624, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38514462

RESUMO

Helicobacter pylori is a highly successful pathogen that poses a substantial threat to human health. However, the dynamic interaction between H. pylori and the human gastric epithelium has not been fully investigated. In this study, using dual RNA sequencing technology, we characterized a cytotoxin-associated gene A (cagA)-modulated bacterial adaption strategy by enhancing the expression of ATP-binding cassette transporter-related genes, metQ and HP_0888, upon coculturing with human gastric epithelial cells. We observed a general repression of electron transport-associated genes by cagA, leading to the activation of oxidative phosphorylation. Temporal profiling of host mRNA signatures revealed the downregulation of multiple splicing regulators due to bacterial infection, resulting in aberrant pre-mRNA splicing of functional genes involved in the cell cycle process in response to H. pylori infection. Moreover, we demonstrated a protective effect of gastric H. pylori colonization against chronic dextran sulfate sodium (DSS)-induced colitis. Mechanistically, we identified a cluster of propionic and butyric acid-producing bacteria, Muribaculaceae, selectively enriched in the colons of H. pylori-pre-colonized mice, which may contribute to the restoration of intestinal barrier function damaged by DSS treatment. Collectively, this study presents the first dual-transcriptome analysis of H. pylori during its dynamic interaction with gastric epithelial cells and provides new insights into strategies through which H. pylori promotes infection and pathogenesis in the human gastric epithelium. IMPORTANCE: Simultaneous profiling of the dynamic interaction between Helicobacter pylori and the human gastric epithelium represents a novel strategy for identifying regulatory responses that drive pathogenesis. This study presents the first dual-transcriptome analysis of H. pylori when cocultured with gastric epithelial cells, revealing a bacterial adaptation strategy and a general repression of electron transportation-associated genes, both of which were modulated by cytotoxin-associated gene A (cagA). Temporal profiling of host mRNA signatures dissected the aberrant pre-mRNA splicing of functional genes involved in the cell cycle process in response to H. pylori infection. We demonstrated a protective effect of gastric H. pylori colonization against chronic DSS-induced colitis through both in vitro and in vivo experiments. These findings significantly enhance our understanding of how H. pylori promotes infection and pathogenesis in the human gastric epithelium and provide evidence to identify targets for antimicrobial therapies.


Assuntos
Colite , Helicobacter pylori , Animais , Humanos , Camundongos , Proteínas de Bactérias/genética , Antígenos de Bactérias/genética , Helicobacter pylori/genética , Transcriptoma/genética , Precursores de RNA/metabolismo , Interações Hospedeiro-Patógeno/genética , Análise de Sequência de RNA , RNA Mensageiro/metabolismo , Citotoxinas/metabolismo
14.
Methods Mol Biol ; 2784: 133-146, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38502483

RESUMO

RNA-fluorescence in situ hybridization (RNA-FISH) is an essential and widely used tool for visualizing RNA molecules in intact cells. Recent advances have increased RNA-FISH sensitivity, signal detection efficiency, and throughput. However, detection of endogenous mRNA splice variants has been challenging due to the limits of visualization of RNA-FISH fluorescence signals and due to the limited number of RNA-FISH probes per target. HiFENS (high-throughput FISH detection of endogenous pre-mRNA splicing isoforms) is a method that enables visualization and relative quantification of mRNA splice variants at single-cell resolution in an automated high-throughput manner. HiFENS incorporates HCR (hybridization chain reaction) signal amplification strategies to enhance the fluorescence signal generated by low abundance transcripts or a small number of FISH probes targeting short stretches of RNA, such as single exons. The technique offers a significant advance in high-throughput FISH-based RNA detection and provides a powerful tool that can be used as a readout in functional genomics screens to discover and dissect cellular pathways regulating gene expression and alternative pre-mRNA splicing events.


Assuntos
Precursores de RNA , RNA , RNA/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , Hibridização in Situ Fluorescente/métodos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Hibridização de Ácido Nucleico , Processamento Alternativo
15.
Wiley Interdiscip Rev RNA ; 15(2): e1838, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38509732

RESUMO

Disruptions in spatiotemporal gene expression can result in atypical brain function. Specifically, autism spectrum disorder (ASD) is characterized by abnormalities in pre-mRNA splicing. Abnormal splicing patterns have been identified in the brains of individuals with ASD, and mutations in splicing factors have been found to contribute to neurodevelopmental delays associated with ASD. Here we review studies that shed light on the importance of splicing observed in ASD and that explored the intricate relationship between splicing factors and ASD, revealing how disruptions in pre-mRNA splicing may underlie ASD pathogenesis. We provide an overview of the research regarding all splicing factors associated with ASD and place a special emphasis on five specific splicing factors-HNRNPH2, NOVA2, WBP4, SRRM2, and RBFOX1-known to impact the splicing of ASD-related genes. In the discussion of the molecular mechanisms influenced by these splicing factors, we lay the groundwork for a deeper understanding of ASD's complex etiology. Finally, we discuss the potential benefit of unraveling the connection between splicing and ASD for the development of more precise diagnostic tools and targeted therapeutic interventions. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution RNA Evolution and Genomics > Computational Analyses of RNA RNA-Based Catalysis > RNA Catalysis in Splicing and Translation.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Humanos , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Transtorno Autístico/genética , Precursores de RNA/genética , Precursores de RNA/metabolismo , Splicing de RNA/genética , Fatores de Processamento de RNA/metabolismo , Antígeno Neuro-Oncológico Ventral
16.
Wiley Interdiscip Rev RNA ; 15(2): e1836, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38453211

RESUMO

Protein-only RNase P (PRORP) is an essential enzyme responsible for the 5' maturation of precursor tRNAs (pre-tRNAs). PRORPs are classified into three categories with unique molecular architectures, although all three classes of PRORPs share a mechanism and have similar active sites. Single subunit PRORPs, like those found in plants, have multiple isoforms with different localizations, substrate specificities, and temperature sensitivities. Most recently, Arabidopsis thaliana PRORP2 was shown to interact with TRM1A and B, highlighting a new potential role between these enzymes. Work with At PRORPs led to the development of a ribonuclease that is being used to protect against plant viruses. The mitochondrial RNase P complex, found in metazoans, consists of PRORP, TRMT10C, and SDR5C1, and has also been shown to have substrate specificity, although the cause is unknown. Mutations in mitochondrial tRNA and mitochondrial RNase P have been linked to human disease, highlighting the need to continue understanding this complex. The last class of PRORPs, homologs of Aquifex RNase P (HARPs), is found in thermophilic archaea and bacteria. This most recently discovered type of PRORP forms a large homo-oligomer complex. Although numerous structures of HARPs have been published, it is still unclear how HARPs bind pre-tRNAs and in what ratio. There is also little investigation into the substrate specificity and ideal conditions for HARPs. Moving forward, further work is required to fully characterize each of the three classes of PRORP, the pre-tRNA binding recognition mechanism, the rules of substrate specificity, and how these three distinct classes of PRORP evolved. This article is categorized under: RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems.


Assuntos
Arabidopsis , Ribonuclease P , Humanos , Ribonuclease P/genética , Ribonuclease P/química , Ribonuclease P/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , Ribonucleases/metabolismo , Endonucleases/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , RNA/metabolismo , Arabidopsis/genética , Especificidade por Substrato
17.
Wiley Interdiscip Rev RNA ; 15(2): e1835, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38479802

RESUMO

The precursor transfer RNAs (pre-tRNAs) require extensive processing to generate mature tRNAs possessing proper fold, structural stability, and functionality required to sustain cellular viability. The road to tRNA maturation follows an ordered process: 5'-processing, 3'-processing, modifications at specific sites, if any, and 3'-CCA addition before aminoacylation and recruitment to the cellular protein synthesis machinery. Ribonuclease P (RNase P) is a universally conserved endonuclease in all domains of life, performing the hydrolysis of pre-tRNA sequences at the 5' end by the removal of phosphodiester linkages between nucleotides at position -1 and +1. Except for an archaeal species: Nanoarchaeum equitans where tRNAs are transcribed from leaderless-position +1, RNase P is indispensable for life and displays fundamental variations in terms of enzyme subunit composition, mechanism of substrate recognition and active site architecture, utilizing in all cases a two metal ion-mediated conserved catalytic reaction. While the canonical RNA-based ribonucleoprotein RNase P has been well-known to occur in bacteria, archaea, and eukaryotes, the occurrence of RNA-free protein-only RNase P in eukaryotes and RNA-free homologs of Aquifex RNase P in prokaryotes has been discovered more recently. This review aims to provide a comprehensive overview of structural diversity displayed by various RNA-based and RNA-free RNase P holoenzymes towards harnessing critical RNA-protein and protein-protein interactions in achieving conserved pre-tRNA processing functionality. Furthermore, alternate roles and functional interchangeability of RNase P are discussed in the context of its employability in several clinical and biotechnological applications. This article is categorized under: RNA Processing > tRNA Processing RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.


Assuntos
RNA Catalítico , Ribonuclease P , Ribonuclease P/química , Ribonuclease P/genética , Ribonuclease P/metabolismo , Precursores de RNA/genética , RNA Catalítico/química , Sequência de Bases , Conformação de Ácido Nucleico , RNA de Transferência/genética , RNA/metabolismo , Processamento Pós-Transcricional do RNA
18.
Nature ; 627(8002): 212-220, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38355801

RESUMO

Circular RNAs (circRNAs), which are increasingly being implicated in a variety of functions in normal and cancerous cells1-5, are formed by back-splicing of precursor mRNAs in the nucleus6-10. circRNAs are predominantly localized in the cytoplasm, indicating that they must be exported from the nucleus. Here we identify a pathway that is specific for the nuclear export of circular RNA. This pathway requires Ran-GTP, exportin-2 and IGF2BP1. Enhancing the nuclear Ran-GTP gradient by depletion or chemical inhibition of the major protein exporter CRM1 selectively increases the nuclear export of circRNAs, while reducing the nuclear Ran-GTP gradient selectively blocks circRNA export. Depletion or knockout of exportin-2 specifically inhibits nuclear export of circRNA. Analysis of nuclear circRNA-binding proteins reveals that interaction between IGF2BP1 and circRNA is enhanced by Ran-GTP. The formation of circRNA export complexes in the nucleus is promoted by Ran-GTP through its interactions with exportin-2, circRNA and IGF2BP1. Our findings demonstrate that adaptors such as IGF2BP1 that bind directly to circular RNAs recruit Ran-GTP and exportin-2 to export circRNAs in a mechanism that is analogous to protein export, rather than mRNA export.


Assuntos
Transporte Ativo do Núcleo Celular , Núcleo Celular , Transporte de RNA , RNA Circular , Transporte Ativo do Núcleo Celular/fisiologia , Núcleo Celular/metabolismo , Guanosina Trifosfato/metabolismo , Carioferinas/antagonistas & inibidores , Carioferinas/deficiência , Carioferinas/genética , Carioferinas/metabolismo , Proteínas Nucleares/metabolismo , Proteína ran de Ligação ao GTP/metabolismo , RNA Circular/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , 60611/metabolismo , Transporte Proteico
19.
Cells ; 13(4)2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38391939

RESUMO

Ribosome biogenesis is essential for the functioning of living cells. In higher eukaryotes, this multistep process is tightly controlled and involves a variety of specialized proteins and RNAs. This pool of so-called ribosome biogenesis factors includes diverse proteins with enzymatic and structural functions. Some of them have homologs in yeast S. cerevisiae, and their function can be inferred from the structural and biochemical data obtained for the yeast counterparts. The functions of human proteins RPF1 and ESF1 remain largely unclear, although RPF1 has been recently shown to participate in 60S biogenesis. Both proteins have drawn our attention since they contribute to the early stages of ribosome biogenesis, which are far less studied than the later stages. In this study, we employed the loss-of-function shRNA/siRNA-based approach to the human cell line HEK293 to determine the role of RPF1 and ESF1 in ribosome biogenesis. Downregulating RPF1 and ESF1 significantly changed the pattern of RNA products derived from 47S pre-rRNA. Our findings demonstrate that RPF1 and ESF1 are associated with different pre-ribosomal particles, pre-60S, and pre-40S particles, respectively. Our results allow for speculation about the particular steps of pre-rRNA processing, which highly rely on the RPF1 and ESF1 functions. We suggest that both factors are not directly involved in pre-rRNA cleavage but rather help pre-rRNA to acquire the conformation favoring its cleavage.


Assuntos
Precursores de RNA , Proteínas de Ligação a RNA , Humanos , Células HEK293 , Ribossomos/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
20.
Nat Commun ; 15(1): 1702, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402241

RESUMO

Ribosome biogenesis is initiated by RNA polymerase I (Pol I)-mediated synthesis of pre-ribosomal RNA (pre-rRNA). Pol I activity was previously linked to longevity, but the underlying mechanisms were not studied beyond effects on nucleolar structure and protein translation. Here we use multi-omics and functional tests to show that curtailment of Pol I activity remodels the lipidome and preserves mitochondrial function to promote longevity in Caenorhabditis elegans. Reduced pre-rRNA synthesis improves energy homeostasis and metabolic plasticity also in human primary cells. Conversely, the enhancement of pre-rRNA synthesis boosts growth and neuromuscular performance of young nematodes at the cost of accelerated metabolic decline, mitochondrial stress and premature aging. Moreover, restriction of Pol I activity extends lifespan more potently than direct repression of protein synthesis, and confers geroprotection even when initiated late in life, showcasing this intervention as an effective longevity and metabolic health treatment not limited by aging.


Assuntos
Proteínas de Caenorhabditis elegans , Longevidade , Animais , Humanos , Longevidade/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Precursores de RNA/metabolismo , Envelhecimento/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...